Tight Nucleotide Binding Sites and ATPase Activities of the *Rhodospirillum rubrum* RrF₁-ATPase as Compared to Spinach Chloroplast CF₁-ATPase

Sara Weiss, 1 Richard E. McCarty, 2 and Zippora Gromet-Elhanan 1

Received March 28, 1994; revised May 19, 1994

Solubilized Rhodospirillum rubrum RrF1-ATPase, depleted of loosely bound nucleotides, retains 2.6 mol of tightly bound ATP and ADP/mol of enzyme. Incubation of the depleted RrF₁ with Mg²⁺-ATP or Mg²⁺-AMP-PNP, followed by passage through two successive Sephadex centrifuge columns, results in retention of a maximal number of 4 mol of tightly bound nucleotides/mol of RrF₁. They include 1.5 mol of nonexchangeable ATP, whereas all tightly bound ADP is fully exchangeable. A similar retention of only four out of the six nucleotide binding sites present on CF₁ has been observed after its passage through one or two centrifuge columns. These results indicate that the photosynthetic, unlike the respiratory, F_1 -ATPases have faster k_{off} constants for two of the Mg-dependent nucleotide binding sites. This could be the reason for the tenfold lower Mg²⁺ than Ca²⁺-ATPase activity observed with native RrF_1 , as with ϵ -depleted, activated CF_1 . An almost complete conversion of both RrF_1 and CF₁ from Ca²⁺- to Mg²⁺-dependent ATPases is obtained upon addition of octylglucoside, at concentrations below its CMC, to the ATPase assay medium. Thus, octylglucoside seems to affect directly the RrF₁ and CF₁ divalent cation binding site(s), in addition to its proposed role in relieving their inhibition by free Mg²⁺ ions. The RrF₁-ATPase activity is 30-fold more sensitive than CF₁ to efrapeptin, and completely resistant to either inhibition or stimulation by the CF₁ effector, tentoxin. Octylglucoside decreases the inhibition by efrapeptin and tentoxin, but exposes on CF₁ a low-affinity, stimulatory site for tentoxin.

KEY WORDS: Rhodospirillum rubrum RrF_1 -ATPase; chloroplast CF_1 ; nucleotide binding sites; Ca^{2+} - and Mg^{2+} -ATPase activity; octylglucoside; F_1 -ATPase inhibitors; efrapeptin; tentoxin.

INTRODUCTION

All respiratory and photosynthetic energy-coupling membranes contain a multisubunit

 F_0F_1 ATPsynthase-ATPase that couples the synthesis and hydrolysis of ATP to transmembrane proton transport. Although F_0F_1 complexes from various sources are structurally and functionally similar, some important differences, especially in rates of ATP hydrolysis and number of tight nucleotide binding sites, have been observed between the respiratory mitochondrial and *Escherichia coli* enzymes and those of chloroplasts. The respiratory membranes and their isolated F_1 complexes show rapid rates of Mg^{2+} -ATPase activity (Penefsky, 1979; Dunn and Heppel, 1981) as compared to the extremely low rates of ATP hydrolysis reported for thylakoid membrane-bound and isolated chloroplast

¹ Department of Biochemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel.

² Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218-2685.

³ Abbreviations: CF₁, EcF₁, MF₁, RrF₁, and TF₁, the soluble F₁-ATPase from chloroplasts, *E. coli*, mitochondria, *R. rubrum*, and the thermophilic bacterium PS3, respectively: AMP-PNP, adenylyl- β , γ -imidodiphosphate; CMC, critical micellar concentration; DTT, dithiothreitol, LDAO, lauryl dimethylamine oxide.

⁴ Dedicated to Professor Achim Trebst in honor of this 65th birthday.

CF₁ (McCarty and Moroney, 1985).³ Activation of the latent CF₁ into a Ca²⁺-ATPase is obtained by various treatments that remove its ϵ -subunit and reduce a disulfide bond which is specific to the CF₁ γ -subunit. These treatments reveal, however, only a very low CF₁ Mg²⁺-ATPase activity. The maximum number of Mg-dependent tight nucleotide binding sites retained on MF₁ and EcF₁ after passage through gel filtration centrifuge columns is six (Cross and Nalin, 1982; Wise et al., 1983). Six sites have recently been observed also on CF₁, but only under strict equilibrium conditions (Girault et al., 1988; Shapiro et al., 1991b). After passage through one (Xue et al., 1987) or two (Shapiro et al., 1991a) centrifuge columns, only four nucleotides were retained on CF₁. Interestingly, the rat liver MF₁ retained also only 4-5 mol nucleotides/mole when assayed in the presence of either Mg²⁺ or Co²⁺ (Williams et al., 1987).

The F_0F_1 ATP synthase of the photosynthetic bacterium Rhodospirillum rubrum occupies an intermediate position between the respiratory and chloroplast enzymes with regard to its ATPase activity. When bound to chromatophore membranes it is an active ATPase exhibiting, as in E. coli (Kanazawa et al., 1980; Dunn and Heppel, 1981), both Mg²⁺ and Ca²⁺-dependent activities (Johansson et al., 1972) at a ratio of 3:1 (Oren and Gromet-Elhanan, 1977). But, whereas the EcF_0F_1 and EcF_1 solubilized from E. coli retain both activities (Kanazawa et al., 1980; Wise et al., 1983), the solubilized R. rubrum F_0F_1 and F_1 complexes lose the Mg²⁺-ATPase activity. Detergent solubilized RrF₀F₁ catalyzes a twofold faster ATP hydrolysis in the presence of Ca2+ than of Mg²⁺ (Bengis-Garber and Gromet-Elhanan, 1979; Schneider et al., 1979), and isolated RrF₁ is predominantly a Ca²⁺-ATPase (Johansson et al., 1973). The RrF₁ ATPase activity is thus similar to that of the Ca²⁺-ATPase of preactivated, ϵ -depleted CF₁, except that with RrF₁ preactivation leading to dissociation of the ϵ -subunit is not required. In this respect RrF₁ behaves rather similarly to EcF₁, where in contrast to CF_1 the inhibitory, but loosely bound ϵ subunit, dissociates upon dilution of the EcF₁ complex into assay buffers (Dunn and Heppel, 1981).

In view of the much lower Mg^{2+} - than Ca^{2+} ATPase activity of both native RrF_1 and ϵ -depleted CF_1 it is interesting to find out whether the nucleotide binding properties of RrF_1 are similar to those of

EcF₁ and MF₁ or to CF₁. No measurements of nucleotide binding to isolated RrF1 have been reported up to now. There are only two published determinations of tightly bound nucleotides in coupled R. rubrum chromatophores, which were assumed to be bound to RrF1. Harris and Baltscheffsky (1979) found 12 and 8.3 mmol of ATP and ADP, respectively, tightly bound per mole of bacteriochlorophyll, whereas Andralojc and Harris (1993) found only 1.76 and 1.38 mmol of ATP and ADP bound/per mole of bacteriochlorophyll. The reason for these very different numbers is not clear, since in both cases there was no information on the ratios of total protein and/or RrF₁ to bacteriochlorophyll. A direct examination of nucleotide binding to isolated RrF₁ is therefore required.

In both RrF₁ (Johansson et al., 1973; Oren and Gromet-Elhanan, 1979) and activated CF₁ (Hochman et al., 1976) free Mg²⁺ was a potent inhibitor of ATPase activity, and unmasking of their Mg2+-ATPase has been obtained by addition of certain anions (Nelson et al., 1972; Webster et al., 1977) or detergents (Soe et al., 1978; Pick and Bassilian, 1982) to the assay medium. A further detailed investigation on activation of native CF₁-ATPase by detergents has, however, revealed that they do also remove the ϵ -subunit from latent CF₁ (Feng and McCarty, 1985), thus suggesting that expression of CF₁Mg²⁺-ATPase requires both removal of the ϵ -subunit and relief of inhibition by free Mg²⁺. Since RrF₁ is an active ATPase in the presence of its ϵ -subunit, it offers a simpler assay system for studying the correlation between relief of inhibition by free Mg²⁺ and expression of a Mg²⁺-ATPase.

In this paper we determine the number and properties of nucleotide binding sites on RrF_1 and compare them with those observed in latent CF_1 . We also examine in detail the effect of octylglucoside on the RrF_1 and CF_1Ca^{2+} - and Mg^{2+} -ATPase activities and on their sensitivity to F_1 -ATPase inhibitors.

EXPERIMENTAL PROCEDURE

Materials

Spinach CF₁ was prepared as described previously (Shapiro and McCarty, 1990). When used for nucleotide binding studies it was freed from contaminating traces of ribulose biphosphate carboxylase/oxygenase

(rubisco) by affinity chromatography (Soteropoulus et al., 1992). CF₁ was stored at 4°C as the ammonium sulfate (50% W/V) precipitate, or in liquid nitrogen in buffer containing 50 mM Na-tricine (pH 8.0), 50 mM NaCl, 4 mM ATP, and 10% glycerol. RrF₁ was removed from R. rubrum chromatophores according to Norling et al (1988), purified, and stored as described by Khananshvili and Gromet-Elhanan (1983). The storage buffer contained 50 mM Na-tricine (pH 8.0), 2 mM ATP, 1 mM EDTA, 1 mM DTT, and 10% glycerol.

ATP was of the highest purity available from Sigma and contained no measurable quantity of ADP by HPLC analysis. AMP-PNP was purchased from ICN Biochemical, and octylglucoside, quercetin, NBf-Cl, and tentoxin from Sigma. Efrapeptin was a gift of Dr. R. L. Hamill of Eli Lilly Co. Stock solutions of quercetin and NBf-Cl were prepared in DMSO and of tentoxin and efrapeptin in water.

Nucleotide Binding Studies

Prior to each experiment, ammonium sulfateprecipitated CF₁ was dissolved in 50 mM Tris-HCl (pH 8.0) and 50 mM NaCl (TN buffer). This latent CF₁ and the native RrF₁ were freed from all loosely bound nucleotides by three successive filtrations on fine grade Sephadex G-50 columns (Penefsky, 1977) equilibrated with TN buffer. The eluted enzymes, designated as depleted CF₁ and RrF₁, were incubated either with no additions or with added Mg²⁺-ATP and Mg²⁺-AMP-PNP as described in the text. Two successive Sephadex centrifuge columns were used to remove excess and loosely bound nucleotides. For analysis of the remaining tightly bound nucleotides, $100-\mu l$ aliquots of the final eluants, containing between 15 and 20 μ M enzyme, were precipitated in the cold with $50 \,\mu\text{l}$ of $1.2 \,\text{M}$ HClO₄. After 5 min on ice the mixture was neutralized and KClO₄ precipitated with 25 µl of 1.3 M K₂CO₃. Each sample was centrifuged two times: once for 5 min at 8700 x g and the supernatant was recentrifuged in a Beckman microfuge for 10 min. The final supernatants were either stored at -20° C or immediately subjected to ion-pairing highpressure liquid chromatography (HPLC) described by Shapiro and McCarty (1990). The concentrations of nucleotides in the tested samples were determined by comparing the obtained integrated peak areas with those of nucleotide solutions of known concentration.

Preactivation by Octylglucoside

Both native RrF₁ and latent CF₁ were preactivated by incubation for 20 min at 35°C in a solution containing 50 mM Na-tricine (pH 8.0), 4 mM ATP, 5 mM DTT, 40 mM octylglucoside, and 0.5–1 mg of protein/ml. Aliquots of all preactivated enzymes were diluted 100-fold into the ATPase assay medium.

Assay Procedures

ATPase activity was assayed as follows: native untreated or preactivated RrF_1 and CF_1 (3–10 μg of protein) were preincubated for 5 min at 35°C in a reaction mixture that contained 50 mM Na-tricine (pH 8.0) with or without the stated concentrations of octylglucoside and/or inhibitors. The assay was started by addition of a mixture of 4 mM ATP and either 8 mM $CaCl_2$ or 2 mM $MgCl_2$. After 5 min at 35°C Pi release was determined according to Taussky and Shorr (1953). Protein concentrations were determined by the method of Lowry *et al.* (1951).

RESULTS

Tight Nucleotide Binding Sites on RrF₁ and CF₁

 $\mathrm{CF_1}$, resuspended from an ammonium sulfate precipitate and depleted of loosely bound nucleotides has been shown to contain between 1.3 and 1.7 mol of tightly bound ADP/mol of enzyme, but no tightly bound ATP (Shapiro *et al.*, 1991a). An identical pattern was observed here with latent depleted $\mathrm{CF_1}$, whereas a similarly depleted native $\mathrm{RrF_1}$ retained around 2.6 mol of tightly bound nucleotides/mol of enzyme, which were distributed between ATP and ADP (Table I). No bound AMP was detected on either $\mathrm{CF_1}$ or $\mathrm{RrF_1}$.

Incubation with Mg²⁺-ATP leads to binding of about two additional moles of ATP/mol of CF₁, but only one additional mole of ATP/mol of RrF₁, thus raising the total number of tightly bound nucleotides to about four per mole of either enzyme (Table I). Incubation of both enzymes with saturating concentrations of Mg²⁺-AMP-PNP results also in detection of up to 4mol of tightly bound nucleotides/mol of CF₁ or RrF₁ (Table I and Fig. 1). In both enzymes about 1 mol of ADP exchanges with AMP-PNP, but the tightly bound ATP in RrF₁ does not exchange with medium AMP-PNP. This leads to an overall

-		mol bound nucleotide/mol ${\mathcal F_1}^b$			
Enzymes and additions		ATP	ADP	AMP-PNP	Total
RrF ₁	None	1.40 ± 0.05	1.20 ± 0.12		2.60
RrF_1	${ m Mg^{2+}}$ -ATP	2.10 ± 0.15	1.30 ± 0.06	_	3.40
RrF_I	Mg ²⁺ -AMP-PNP	$\boldsymbol{1.35 \pm 0.10}$	$\boldsymbol{0.28 \pm 0.17}$	1.95 ± 0.10	3.58
CF_1	None	0.10 ± 0.12	1.62 ± 0.20		1.72
CF_1	${ m Mg^{2+}}$ -ATP	2.05 ± 0.07	1.60 ± 0.15	_	3.65
CF_1	Mg^{2+} -AMP-PNP	0.10 ± 0.10	0.54 ± 0.20	3.03 ± 0.20	3.67

Table I. Mg-Dependent Tight-Binding Sites for ADP, ATP, and AMP-PNP on RrF₁ as Compared to Latent CF₁^a

^b Values shown are means \pm S.D.; n = 3.

incorporation of about 2 mol of AMP-PNP/mol of RrF₁ as compared to 3 mol/mol of latent CF₁ (Table I) or activated CF₁ (Shapiro *et al.*, 1991a).

Tight binding of saturating concentrations of Mg²⁺-AMP-PNP to RrF₁ is very rapid at 35°C. The time dependence shown in Fig. 1 reveals that the first mole of AMP-PNP/RrF₁ binds within 1 min, probably to an empty nucleotide binding site, since tightly bound ATP does not decrease and ADP decreases by less than 15%. Further binding of AMP-PNP correlates closely with the disappearance of all tightly bound ADP, so that after 30 min at 35°C only 0.1 mol of ADP, but about 1.5 mol of ATP, remain tightly bound per mole of RrF₁, and up to 2.5 mol of AMP-PNP are incorporated per mole of RrF₁.

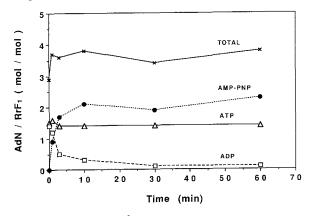


Fig. 1. Time course of Mg²⁺-AMP-PNP tight binding to RrF₁ and exchange with tightly bound ADP. Depleted RrF₁ was incubated at 35°C in TN buffer containing 2 mM MgCl₂ and 5 mM AMP-PNP. Incubations were stopped at the indicated time points by application of the sample to the first centrifuge column. Further treatment of the samples and analysis of bound nucleotides are described under Experimental Procedures. The 0-min sample was incubated without Mg²⁺-AMP-PNP.

Effect of Octylglucoside on various RrF₁ and CF₁ ATPase Activities

Figures 2 and 3 illustrates major differences in ATPase activities of CF₁ and RrF₁. Untreated native CF₁ shows no detectable Ca²⁺- or Mg²⁺-ATPase activity, whereas untreated native RrF₁ is an active Ca²⁺-ATPase (Fig. 2), and a 7- to 10-fold slower Mg²⁺-ATPase (Fig. 3). These results were obtained

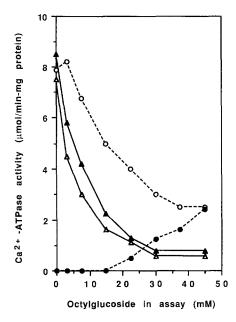
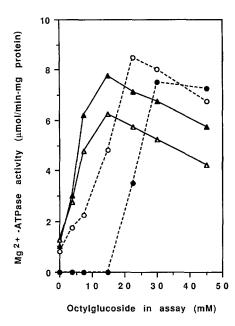



Fig. 2. Increasing concentrations of octylglucoside in assay inhibit the Ca^{2+} -ATPase of RrF_1 and preactivated CF_1 but stimulate the Ca^{2+} -ATPase of latent CF_1 . Conditions of preactivation, dilution, incubation with the indicated concentrations of octylglucoside, and ATPase assay are described under Experimental Procedures. ATPase activity was followed after addition of a mixture containing 4 mM ATP and 8 mM $CaCl_2$. \bullet , latent, untreated CF_1 ; \triangle , preactivated CF_1 ; \triangle , native, untreated RrF_1 .

^a Depleted RrF₁ and CF₁ were incubated for 1.5h at room temperature in TN buffer with 2mM MgCl₂ and either 5mM ATP or 5mM AMP-PNP. One sample was incubated with buffer only. Excess and loosely bound nucleotides were removed, and concentrations of protein and tightly bound nucleotides were measured as described under Experimental Procedures.

Fig. 3. Increasing concentrations of octylglucoside in assay stimulate RrF₁ and CF₁ Mg²⁺-ATPase activity. Treatments, procedures, and symbols of assayed enzymes are as described in Fig. 2, except that ATPase activity was followed after addition of a mixture containing 4 mM ATP and 2 mM MgCl₂.

with no additions using a Ca^{2+}/ATP ratio of 2 and a Mg^{2+}/ATP ratio of 0.5, which were found to be optimal for activated CF_1 (Hochman *et al.*, 1976; Pick and Bassilian, 1982; Feng and McCarty, 1985) as well as for RrF_1 (not shown).

Preactivation of the native RrF_1 containing all five F_1 polypeptide subunits by octylglucoside followed by a 100-fold dilution into an assay with no added octylglucoside did not change its active Ca^{2+} -ATPase (Fig. 2) or slow Mg^{2+} -ATPase (Fig. 3). In native latent CF_1 such preactivation induced both Ca^{2+} - and Mg^{2+} -ATPase activities but to a different extent: The CF_1 Ca^{2+} -ATPase was much more activated (Fig. 2) than the CF_1 Mg^{2+} -ATPase (Fig. 3). This preactivation, which has been shown to release at least some of the inhibitory ϵ subunit from latent CF_1 (Feng and McCarty, 1985), thus raised the ϵ -depleted CF_1 Ca^{2+} - and Mg^{2+} -ATPase activities to the level obtained in the untreated, ϵ -containing RrF_1 (Figs. 2 and 3).

A different and much more complicated effect was observed upon addition of increasing concentrations of octylglucoside to the ATPase assay medium. The Ca²⁺-ATPase activity of either native or pretreated RrF₁ was inhibited (Fig. 2), whereas the very slow Mg²⁺-ATPase activity of both types of RrF₁ is stimulated (Fig. 3). These opposite effects show a very similar dependence on octylglucoside

concentration. A 50% inhibition or stimulation is already obtained at 5 mM octylglucoside, a concentration well below the octylglucoside CMC, and ineffective in releasing the CF₁ ϵ -subunit (Feng and McCarty, 1985). Addition of octylglucoside to the assay medium converted preactivated CF₁ from a Ca²⁺- to a Mg²⁺-dependent ATPase, except that 15 mM octylglucoside was required for a 50% effect (Figs. 2 and 3).

With latent CF_1 the presence of octylglucoside in the assay exhibited a much more complicated effect. The latent CF_1 Ca^{2+} -ATPase is rather induced by high concentrations of octylglucoside that release the inhibitory CF_1 ϵ -subunit (Feng and McCarty, 1985), so in the presence of 45 mM octylglucoside in the assay an identical rate of ATP hydrolysis was obtained in both latent and preactivated CF_1 Ca^{2+} ATPases (Fig. 2). The latent CF_1 Mg^{2+} -ATPase activity, as the RrF_1 and preactivated CF_1 Mg^{2+} -ATPases, was markedly stimulated by addition of octylglucoside into the assay (Fig. 3).

These results indicate that the effect of octylglucoside on RrF_1 is much simpler than on CF_1 because the presence of the ϵ subunit does not inhibit expression of the RrF_1 -ATPase activity.

Inhibitors of RrF₁ and CF₁-ATPase Activities

The similarities and differences in nucleotide binding properties and response to activation processes obtained with RrF_1 and CF_1 prompted us to compare also the effect of various F_1 inhibitors on both enzymes. For two inhibitors, tentoxin and efrapeptin, RrF_1 and CF_1 exhibit markedly different sensitivities (Figs. 4 and 5).

Tentoxin is produced by a plant pathogenic fungus and functions as a species-specific potent effector of CF₁ (Steele et al., 1976; Selmand and Durbin, 1978). Heat- or trypsin-activated CF₁ Ca²⁺-ATPases from sensitive plants, such as lettuce or spinach, were inhibited 50% by as little as 10-30 nM tentoxin (Selman and Durbin, 1978). On the other hand, CF₁ from plants insensitive to the pathogen, such as radish or various tobacco strains, required 20 to 1000 times higher concentrations of tentoxin for 50% inhibition (Steele et al., 1976; Conrad et al., 1981). Lettuce and spinach CF₁ have, in addition to the high-affinity, inhibitory site for tentoxin, also a low-affinity site, which at $50-1000 \,\mu\text{M}$ tentoxin stimulates up to 4-fold their Ca²⁺-ATPase activity (Steele et al., 1978; and Fig. 4).

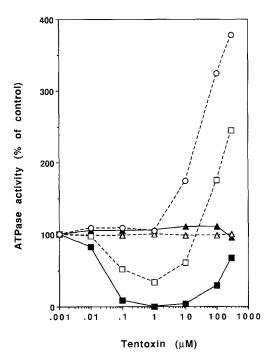
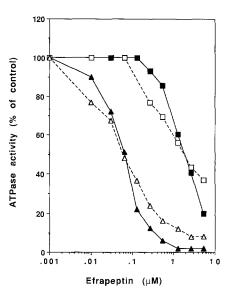



Fig. 4. Effect of tentoxin on RrF_1 and CF_1 ATPase activities. Preactivated RrF_1 and CF_1 were prepared and assayed as described under Experimental Procedures. The Ca^{2+} -ATPase activities of $RrF_1(\blacktriangle)$ and $CF_1(\blacksquare)$ were assayed with no added octylglucoside. The Mg^{2+} -ATPase activities of $RrF_1(\triangle)$ and $CF_1(\square)$ were assayed in the presence of 16 mM octylglucoside. The CF_1 Mg^{2+} -ATPase was also assayed in the presence of 40 mM octylglucoside (\bigcirc) . Control Ca^{2+} -ATPase activities in μ mol Pi released/min per mg of protein were: 7.1 for RrF_1 and 10.2 for CF_1 . Control Mg^{2+} -ATPase activities were 8.2 for RrF_1 and 5.6 for CF_1 with 16 mM octylglucoside, and 8.6 for CF_1 with 40 mM octylglucoside.

Figure 4 illustrates that, in contrast to spinach CF_1 , the RrF_1 Ca^{2+} -ATPase activity is neither inhibited nor stimulated by tentoxin concentrations ranging between $1\,nM$ to $300\,\mu M$. So the RrF_1 Ca^{2+} -ATPase is fully resistant to tentoxin, being uneffected even by concentrations that inhibit the CF_1 Ca^{2+} -ATPase activity of various insensitive plants.

Unlike with the Ca²⁺-ATPase, the reported effects of tentoxin on CF₁Mg²⁺-ATPase activity are very variable, even for CF₁ complexes isolated from sensitive plants. In some cases very little or no inhibition was obtained by up to 10 μ M tentoxin (Pick and Bassilian, 1982; Pick *et al.*, 1982), whereas in another case an identical pattern of tentoxin inhibition of both Ca²⁺ and Mg²⁺-dependent CF₁-ATPase activities was reported (Hu *et al.*, 1993). These very different effects of tentoxin were obtained when the CF₁ Mg²⁺-ATPase activity was unmasked

Fig. 5. Efrapeptin inhibition of RrF₁ and CF1 ATPase activities. Preactivated RrF₁ and CF₁ were prepared and assayed as described under Experimental Procedures. Symbols of assayed enzymes and activities are as described in Fig. 4.

by addition of sulfite (Hu et al., 1993) as compared to octylglucoside (Pick and Bassilian, 1982).

The results summarized in Fig. 4 indicate that the presence of octylglucoside in the assay does indeed decrease the inhibition by tentoxin, while increasing its stimulatory effect. Thus, with 16 mM octylglucoside in the assay there is a pronounced, although not complete, inhibition of the CF₁ Mg²⁺-ATPase by 100 nM to $10 \mu\text{M}$ tentoxin, and a 2.5 fold stimulation by $300 \,\mu\text{M}$ tentoxin. But in the presence of $40 \,\text{mM}$ octylglucoside, the concentration used in earlier investigations (Pick and Bassilian, 1982; Pick et al., 1982), no inhibition is observed even with up to $1 \,\mu M$ tentoxin. Furthermore the stimulatory effect of tentoxin starts already at 10 µM and amounts to about 4-fold at 300 μ M tentoxin (Fig. 4). The Mg²⁺-ATPase activity of RrF₁ is not affected at all by tentoxin even when assayed in the presence of 16 mM octylglucoside (Fig. 4). It is also completely insensitive to tentoxin in the presence of sulfite (not shown). So in RrF₁, unlike in CF₁, both Ca²⁺- and Mg²⁺-dependent ATPase activities are completely unaffected by tentoxin under all assay conditions used.

Efrapeptin has been reported to inhibit completely isolated RrF₁ (Webster *et al.*, 1977). When tested under identical conditions it inhibits both RrF₁ and CF₁, but the latter is much less sensitive (Fig. 5). Half maximal inhibition of both RrF₁

Ca²⁺- and Mg²⁺-ATPase activities is obtained at a ratio of 1.6 mol per mole of RrF₁, whereas for CF₁ a ratio of 50 mol of efrapeptin per mole of enzyme is required. RrF₁ is thus as sensitive to efrapeptin as MF₁ (Cross and Kohlbrenner, 1978), while the lower sensitivity of CF₁ is similar to that reported for EcF₁ (Wise *et al.*, 1983). The inhibition of RrF₁ by efrapeptin, as that of CF₁ by tentoxin, is decreased by increasing concentrations of octylglucoside in the assay. The similar effect of efrapeptin on Ca²⁺- and Mg²⁺ ATPase activities has been observed with 16 mM octylglucoside in the Mg²⁺ ATPase assay (Fig. 5), whereas with 40 mM octylglucoside a 5-fold higher concentration of efrapeptin is required.

Among other tested general F_1 inhibitors, quercetin and NBf-Cl have been found to inhibit RrF₁ and CF₁ to a similar extent and were not affected by the presence of octylglucoside in the assay medium, whereas the inhibition of both enzymes by azide has decreased by 6- to 10-fold upon increasing the concentration of octylglucoside in the assay from 16 to 40 mM (not shown).

DISCUSSION

A total number of four Mg-dependent tightly bound nucleotides are retained on RrF₁ (Table I and Fig. 1) as well as on latent or activated CF₁ (Xue et al., 1987; Shapiro et al., 1991a), after passage through one or two successive centrifuge columns. The photosynthetic F_1 -ATPases thus form a separate group from most respiratory F₁ ATPases, which retain six nucleotide binding sites after passage through a centrifuge column (Cross and Nalin, 1982; Wise et al., 1983). However, when assayed under strict equilibrium conditions, six nucleotide binding sites have been observed also on CF₁ (Girault et al., 1988; Shapiro et al., 1991b), and it is therefore generally accepted that all F₁-ATPases have six nucleotide binding sites (Penefsky and Cross, 1991). The lower number of tightly bound nucleotides retained on CF1 and RrF1 does indicate that two of their bound nucleotides have faster k_{off} constants.

An additional difference between the two groups of F_1 -ATPases is illustrated in Figs. 2 and 3. The photosynthetic enzymes used in the nucleotide binding assays are mainly Ca^{2+} -ATPases showing either no or a very low Mg^{2+} -ATPase activity, whereas both MF_1 and EcF_1 are very active

 ${
m Mg^{2+}}$ -ATPases (Penefsky, 1979; Dunn and Heppel, 1981). The much lower Mg-ATPase activity of ${
m RrF_1}$ and ${
m CF_1}$ could be due to the faster $K_{
m off}$ constants of two of their Mg-dependent nucleotide binding sites. Binding or incorporation of a maximal number of nucleotides has been found to depend on the presence of optimal concentrations of MgCl₂ in various ${
m F_1}$ complexes (Cross and Nalin, 1982; Shapiro et al., 1991a) as well as in the isolated ${
m RrF_1}$ β subunit (Gromet-Elhanan and Khananshvili, 1984; Khananshvili and Gromet-Elhanan, 1984).

The very slow Mg²⁺-ATPase activities of activated, ϵ -depleted CF₁ and native, ϵ -containing RrF₁ can be stimulated by addition of either anions, such as maleate, bicarbonate, or sulfite (Nelson et al., 1972; Webster et al., 1977), or detergents such as octylglucoside (Soe et al., 1978; Pick and Bassilian, 1982). The anions have been reported to stimulate the Mg²⁺-ATPase of activated CF₁ (Nelson et al., 1972) or native RrF₁ (Webster et al., 1977; Norling et al., 1988) while showing no significant effect on their respective Ca²⁺-ATPase activities. But the stimulation by octylglucoside is accompanied in both enzymes by a parallel inhibition of the Ca²⁺dependent ATP hydrolysis (Figs. 2 and 3). The effect of these two types of activating agents must therefore be very different. The effect of anions is restricted to relief of inhibition by free Mg²⁺ ions. Octylglucoside, on the other hand, exerts an additional, more direct effect on the specificity of the divalent cation binding site(s) of RrF₁ and activated CF₁ toward Ca²⁺ and Mg²⁺. A very similar effect, of almost complete conversion of RrF₁ from Ca²⁺- to Mg²⁺-dependent ATPase, has been observed when ATP was replaced by the hydrolyzable analog 1.N⁶-etheno ATP (Schafer et al., 1980).

An indication that changes in specificity of an F_1 -ATPase toward Mg^{2+} can result from a single point mutation in one essential amino acid residue, serine 174, on the $F_1\beta$ subunit has been reported in EcF_1 (Noumi *et al.*, 1984). In the mutant this serine 174, which is fully conserved in all tested F_1 -ATPases (Walker *et al.*, 1985), is changed to phenylalanine. This change results in a large decrease in the Mg^{2+} -ATPase activity but very little change in the Ca^{2+} -ATPase activity of the mutated EcF_1 (Kanazawa *et al.*, 1980; Noumi *et al.*, 1984). The neutral detergent, LDAO, has been reported to stimulate by 5- to 6-fold the EcF_1Mg^{2+} -ATPase activity, but its effect on the EcF_1 Ca^{2+} -ATPase has not been tested (Lotscher *et al.*, 1984). It would be

very interesting to compare the effect of LDAO on both Ca^{2+} - and Mg^{2+} -ATPase activities of the wild type EcF_1 and its ser 174 \rightarrow Phe mutant. LDAO has also been shown to stimulate by up to 4-fold the TF_1 Mg^{2+} -ATPase (Paik *et al.*, 1993).

In addition to stimulating the Mg²⁺-ATPase activity of various F₁-ATPases, octylglucoside and LDAO have also been shown to exert a very interesting dual effect on the action of various F_1 inhibitors. We show here that the presence of 40 mM octylglucoside decreases the inhibitory action of azide, efrapeptine, and tentoxin on RrF₁ and CF₁. Moreover, in parallel to the inactivation of the high-affinity, inhibitory tentoxin site on CF₁, octylglucoside also unmasked or activated the CF₁ low-affinity, stimulatory tentoxin site (Fig. 4). Using stimulating concentrations of LDAO, Paik et al., (1993) have observed that the stimulation of the TF₁Mg²⁺-ATPase by a high-affinity rhodamine 6G site was masked, while a low-affinity, inhibitory site for the dye was exposed. Interestingly, for both rhodamine 6G (Paik et al., 1993) and tentoxin (Gromet-Elhanan and Avital, 1992) the effect of the high-affinity site has been suggested to require the interaction of the γ subunit with the α and β subunits, whereas for the low-affinity site only the α and β subunits are required.

ACKNOWLEDGMENTS

This work was supported by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel and from the Minerva Willstätter Center for Research in Photosynthesis, Rehovot, Israel (to Z.G-E.) and by a grant DMB 91-04742 from the National Science foundation (to R.E.M.).

REFERENCES

- Andralojc, P. J., and Harris, D. A. (1993). Biochim. Biophys. Acta 1143, 51–61.
- Bengis-Garber, C., and Gromet-Elhanan, Z. (1979). *Biochemistry* 18, 3577-3581.
- Conrad, P. L., Conrad, J. M., and Durbin, R. D. (1981). In *Energy Coupling Photosynthesis* (Selman, B. R., and Selman-Reimer, S., eds.), Elsevier/North Holland, New York, pp. 175–178.
- Cross, R. L., and Kohlbrenner, W. E. (1978). J. Biol. Chem. 253, 4865–4873.
- Cross, R. L., and Nalin, C. M. (1982). J. Biol. Chem. 257, 2874–2881.
- Dunn, S. D., and Heppel, L. A. (1981). Arch. Biochem. Biophys. 210, 421–436.

- Feng, Y., and McCarty, R. E. (1985). Arch. Biochem. Biophys. 238, 61-68.
- Girault, G., Berger, G., Galmiche, J.-M., and Andre, F. (1988). J. Biol. Chem. 263, 14690-14695.
- Gromet-Elhanan, Z, and Avital, S. (1992). *Biochim. Biophys. Acta* **1102**, 379–385.
- Gromet-Elhanan, Z., and Khananshvili, D. (1984). Biochemistry 23, 1022-1028.
- Harris, D. A., and Baltscheffsky, M. (1979). Biochem. Biophys. Res. Commun. 86, 1248–1255.
- Hochman, Y., Lanir, A., and Carmeli, C. (1976). FEBS Lett. 61, 255-259.
- Hu, N., Mills, D. A., Huchzermeyer, B., and Richter, M. L. (1993). J. Biol. Chem. 268, 8536–8540.
- Johansson, B. C., Baltscheffsky, M., and Baltscheffsky, H. (1972).
 In Proceedings of the IInd International Congress on Photosynthesis Research (Forti, G., Avron, M., and Melandri, B., eds.), Vol. 2, Dr. W. Junk N. V., The Hague, pp. 1203–1209.
- Johansson, B. C., Baltscheffsky, M., and Baltscheffsky, H. (1973).
 Eur. J. Biochem. 40, 109-117.
- Kanazawa, H., Horiuchi, Y., Takagi, M., Ishino, Y., and Futai, M. (1980). J. Biochem. 88, 695–703.
- Khanashvili, D., and Gromet-Elhanan, Z. (1983). J. Biol. Chem. 258, 3714–3719.
- Khananshvili, D., and Gromet-Elhanan, Z. (1984). FEBS Lett. 178, 10-14.
- Lotscher, H. R., de Jong, C., and Capaldi, R. A. (1984). Biochemistry 23, 4140-4143.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–275.
- McCarty, R. E., and Moroney, J. V. (1985). In *The Enzymes of Biological Membranes* (Martonosi, A., ed.), 2nd edn., Plenum Press, New York, pp. 383–413.
- Nelson, N., Nelson, H., and Racker, E. (1972). J. Biol. Chem. 247, 6506–6510.
- Norling, B., Strid, A., and Nyren, P. (1988). Biochim. Biophys. Acta 935, 123–129.
- Noumi, T., Mosher, M. E., Nator, S., Futai, M., and Kanazawa, H. (1984). J. Biol. Chem. 259, 10071–10075.
- Oren, R., and Gromet-Elhanan, Z. (1977). FEBS Lett. 79, 147-150. Oren, R., and Gromet-Elhanan, Z. (1979). Biochim. Biophys. Acta 548, 106-118.
- Paik, S. R., Yokoyama, K., Yoshida, M., Ohta, T., Kagana, Y., and Allison, W. S. (1993). J. Bioenerg. Biomembr. 25, 679–684.
- Penefsky, H. S (1977). J. Biol. Chem. 252, 2891-2899.
- Penefsky, H. S. (1979). Adv. Enzymol. 49, 223-280.
- Penefsky, H. S., and Cross, R. L. (1991). Adv. Enzymol. 64, 173-214.
- Pick, U., and Bassilian, S. (1982). Biochemistry 24, 6144-6152.
- Pick, U., Conrad, P. L., Conrad, J. M., Durbin, R. D., and Selman, B. R. (1982). Biochim. Biophys. Acta 682, 55–58.
- Schafer, H. J., Muller, H. W., and Dose, K. (1980). Biochem. Biophys. Res. Commun. 95, 1113–1118.
- Schneider, E., Muller, H. W., Rittinghaus, K., Thiele, V., Schwulera, V., and Dose, K. (1979). Eur. J. Biochem. 97, 511-517.
- Selman, B. R., and Durbin, R. D. (1978). Biochim. Biophys. Acta 502, 29-37.
- Shapiro, A. B., and McCarty, R. E. (1990). J. Biol. Chem. 265, 4340–4347.
- Shapiro, A. B., Huber, A. H., and McCarty, R. E. (1991a). J. Biol. Chem. 266, 4194–4200.
- Shapiro, A. B., Gibson, K. D., Scheraga, H. A., and McCarty, R. E. (1991b). J. Biol. Chem. 266, 17276–17285.
- Soe, G., Nishi, N. Kakono, T., and Yamashita, J. (1978). J. Biochem. 84, 805–814.

- Soteropoulos, P., Süss, K.-H., and McCarty, R. E. (1992). J. Biol. Chem. 267, 10348-10354.
- Steele, J. A., Uchytil, T. F., and Durbin, R. D., Bhatnagar, P., and Rich, D. H. (1976). *Proc. Natl. Acad. Sci. USA* 73, 2245–2248.
- Steele, J. A., Uchytil, T. F., and Durbin, R. D. (1978). Biochim. Biophys. Acta 504, 136-141.
- Taussky, H. H., and Shorr, E. (1953). J. Biol. Chem. 202, 675-685.
- Walker, J. E., Fearnly, I. M., Gay, N. J., Gibson, B. W., Northrop,
- F. D., Powell, S. J., Runswick, M. J., Saraste, M., and Tybulewicz, V. L. J. (1985). *J. Mol. Biol.* **184**, 677–700.
- Webster, G.-D., Edwards, P. A., and Jackson, J. B. (1977). FEBS Lett. 76, 29-35.
- Williams, N., Hullihen, J., and Pedersen, P. L. (1987). *Biochemistry* **26**, 162–169.
- Wise, J. G., Duncan, T. M., Latchney, L. R., Cox, D. W., and Senior, A. E. (1983). *Biochem. J.* **215**, 343-350.
- Xue, Z., Zhou, J.-M., Melese, T., Cross, R. L., and Boyer, P. D. (1987). *Biochemistry* 26, 3749-3753.